2023 COMPANY PROFILE

We deliver what the customers focusing on

VHP

Nature Of Business: CORP Start of business: 1998 DUNS Number:663863497 Occupied Area: 4600sqm Capability: 200-260 molds/year

OUR TEAM

All project Managers are with 15+ years of experiences

Employees: 120 Design Engineers: 16 Project Engineers: 12 Quoting Engineers: 3 Sales: 8

Mold Tolerance Accuracy: ±0.005mm Product Tolerance Accuracy: ±0.01mm Max injection machine size: 2000 Ton Max Mold Size: 1800*1600*1200*mm

MOLD CAPABILITIES

HIGH PRCISION MULTI-CAVITY MOLD LARGE & COMPLEX MOLD (up to 20T)

2K MOLD/OVER-MOLD STACK MOLD BMC-SMC MOLD GAS- ASSISTED MOLD In Mold Decoration

DESIGN AND MOLDFLOW

MOLD STANDARD

DME HASCO

Feasibility Study (DFM) Economic Evaluation Mold Flow Analysis Full 2D/3D Design

TESTING & MOLDING

VHP Tooling has got deep understanding and extensive experiences in a wide variety of injection molding technologies and production methods to assist customers in transforming innovative ideas into real products. To ensure process stability and product quality.

We are in strict accordance with ISO9001: 2015 quality control procedures to ensure the products meet customers' requirements.

A very simple study is performed to determine this time. Samples molded with different holding times are weighed and the time after which the weight remains constant is set as the holding time. As the holding time is increased more and more plastic enters the cavity increasing the weight. But as soon as the gate is frozen, the plastic cannot get into the cavity and the part weight remains constant. This is called the gate freeze time or the gate seal time. See the picture on the next page.

V	\checkmark	P

Date:	03/14/18	Location X		XXX XXX	Intensification Ratio (Ri)		13.19	
	Tool #:	XXXXX	Press Size	380T	Stroke, include decompression (inches or mm)		ches or mm)	51.00
I	Material: XXXXXX			1st-2nd stage position transfer (inches or mm)			20.50	
Part:	Part: XXXX_XXX		Stroke travel distance (inches or mm)			30.50		
	Mach. Set	Fill Time	Hydraulic Press.	Inten.	Plastic	Relative	Shear	Mach.
	Velocity	Ft	At Transfer (Ht)	Ratio	Pressure psi	Viscosity	Rate	Actual Vel.
Shot #	in-mm/sec	seconds	psi	Ri	Ht x Ri	Ht x Ri x Ft	1/Ft	in-mm/sec
1	5.00 / 90%	0.56	1,320	13.19	17,411	9,750	1.79	54.46
2	4.50 / 80%	0.57	1,320	13.19	17,411	9,924	1.75	53.51
3	4.00 / 70%	0.59	1,300	13.19	17,147	10,117	1.69	51.69
4	3.50 / 60%	0.62	1,300	13.19	17,147	10,631	1.61	49.19
5	3.00 / 50%	0.68	1,250	13.19	16,488	11,212	1.47	44.85
6	2.50 / 40%	0.84	1,200	13.19	15,828	13,296	1.19	36.31
7	2.00 / 35%	1.15	1,000	13.19	13,190	15,169	0.87	26.52
8	1.50 / 30%	1.40	900	13.19	11,871	16,619	0.71	21.79
9	1.00 / 25%	1.87	800	13.19	10,552	19,732	0.53	16.31
10	0.75 / 20%	2.71	700	13.19	9,233	25,021	0.37	11.25
11	0.50 / 15%	4.11	680	13.19	8,969	36,863	0.24	7.42
12	0.25 / 10%	8.02	800	13.19	10,552	84,627	0.12	3.80

Viscosity Curve Calculation

How to define the viscosity curve of injection molding?

1) Set the melt temperature in middle of range as described by manufacturing.

2) Set all the holding phase parameter to zero. This means only injection no holding.

3) Set the Injection pressure to maximum to available.

4) Set the cooling time sufficient to ejection.

5) Set injection speed slow, and make sure component should be short only 50% filled, if not adjust the material position.

Cavity No.	Transfer Position Weight (Must be 90%-95%)	Gate Seal Weight	Direction	Percentage	Percent Difference
ROR3	3.35	3.57		93.8%	
ROR5	2.86	3.00		95.3%	
ROR4	2.43	2.62		92.7%	
ROR2	2.47	2.69		91.8%	
ROR1	3.09	3.32		93.1%	7.50/
LOR2	4.98	5.07		98.2%	7.5%
LOR4	3.44	3.78		91.0%	
LOR3	3.32	3.60		92.2%	
LOR1	3.23	3.56		90.7%	
LOR5	3.55	3.80		90.7%	

Good cavity and runner design is crucial in order to achieve a balanced fill where all cavities fill at the same time with the same shear rate. If some fill prior to others, pack and hold will not have the same influence on all cavities and dimensions will be different. If this is the case, band-aids will need to be applied to the process in order to achieve the level of quality required. This can be done by trying to manipulate the injection speeds, over packing most cavities as well as many other adjustments. This will result in a very small process window that will not encompass all the normal variations that are expected. Needless to say, the process will never be optimized or as profitable as it could have been.

Pressure Loss Data	Intensification Ratio		14.70	Units
	System Hydraulic Pressure		2,400	psi
Fill in Yellow Cells		HYDRAULIC Presure	Plastic Pressure	
Total Pressure Needed to Fill Part 99% Full		2,040	29,988	psi
Pressure to Purge Shot Through Nozzle		165	2,426	psi
Fill in Yellow Cells		985	14,480	165
Fill in Yellow Cells		1,200	17,640	psi

Actual Pressure Loss For Each Flow Path		Max psi Drop Permissible
	Actual	
Nozzle	2,426	4,500
Sprue and Runner	12,054	6,000
Gate	3,161	5,000
Part	12,348	?
Presure Available to Part	5,292	

You can figure out where you lost pressure—and how to reduce this loss—by making short shots. In this scenario, the sprue and runner were responsible for too much pressure loss (see graph below). But simply opening up the runner to reduce pressure loss will lead to other issues. Best to do a mold flow analysis to find a compromise solution.

QUALITY CONTROL

Inspection Process:

1.Electrode Inspection2. Mold Steel Inspection3.Mold Assembly Check4.FAI Report for product5.CPK Report

OUR ENVIRONMENT

high speed CNC

MAKINO CNC

Makino and YCM high speed CNC

Sodick slow Wire-cut EDM

Makino Mirror EDM machine

2023

Mirror EDM machines

Precision grind machine

JAPAN NISSEI: Mold trial 80-450 Ton

2K Mold For Air Vent Outlet Component

For Center Console

2023

Stack Mold in automotive

Stack Mold

SAMPLES

SAMPLES

LIGHTING PARTS 2K

SAMPLES

VMP

CUSTOMERS WITH VHP

Carlos Alberto Hernandez Tooling Specialist

+52 442 335-1008

- ⊠ Carlos.h@vhptooling.com
- www.vhptooling.com
- Factory Address: Building-7WanAn Road, ChangXin Industry Zone, ShaJingTown, BaoanDistrist, ShenZhen China.(518106)
- Mexico Office: Paseo Mision De Jalpan 14–1 Fracc. Colinas Del Bosque 1a. Secc. 76904 Corregidora, Queretaro

THANK