

# Company Overview

Over the last 35 years Nitrex has become a leading force in the heat treating industry, as an equipment manufacturer, a service provider of a wide variety of heat treatments, and most importantly a developer of gas nitriding & gas nitrocarburizing technologies and solutions.

### Nitrex Worldwide




**HTS Division** 

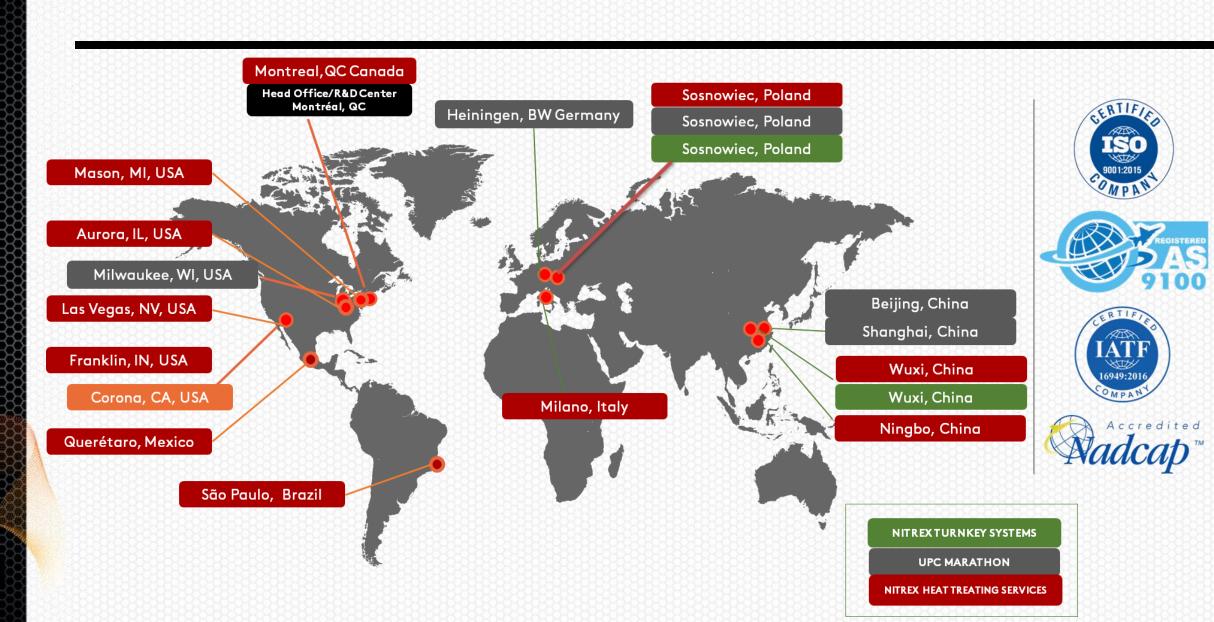


**NTS Division** 

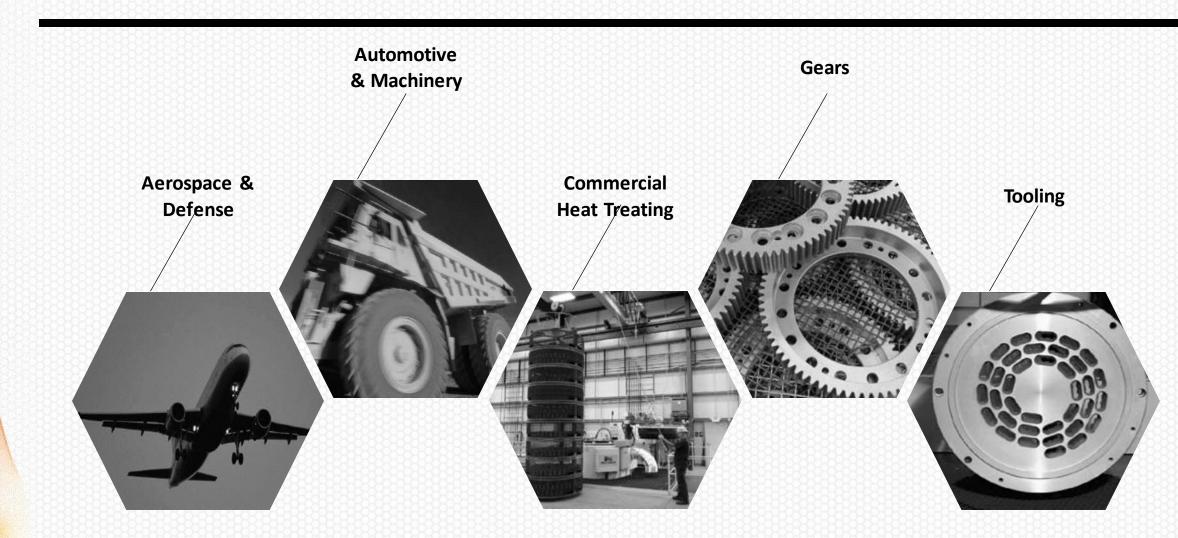


**UPC** Division




Nitrex is worldwide concentrated in core divisions:

- HTS (Heat Treatment Services Provider),
- NTS (Seller of Turnkey Equipment and Solutions), and
- UPC (R&D, A.I. Monitoring, and 4.0 Control Systems developer).


Nitrex Querétaro is part of HTS.



### Nitrex Worldwide



# Industries we serve



# Nitrex Querétaro, México.

We serve mainly the automotive industry, along with some portion of Manufacturing and Oil and Gas, and in 2021, we were appointed AS9100D certified company and with it, our entrance into the aerospace industry was completed, and strengthened by obtaining NADCAP AC 7102/4.

### Certifications in México









Certificates of Automotive and Aerospace Quality Management Systems, as well as Querétaro Business Merit Award 2020 (1<sup>st</sup> Place), and 2019 (2<sup>nd</sup> Place) edition. This Award is the most renown Quality and Compliance competence among all companies registered in the State.

# Relevant Partnerships









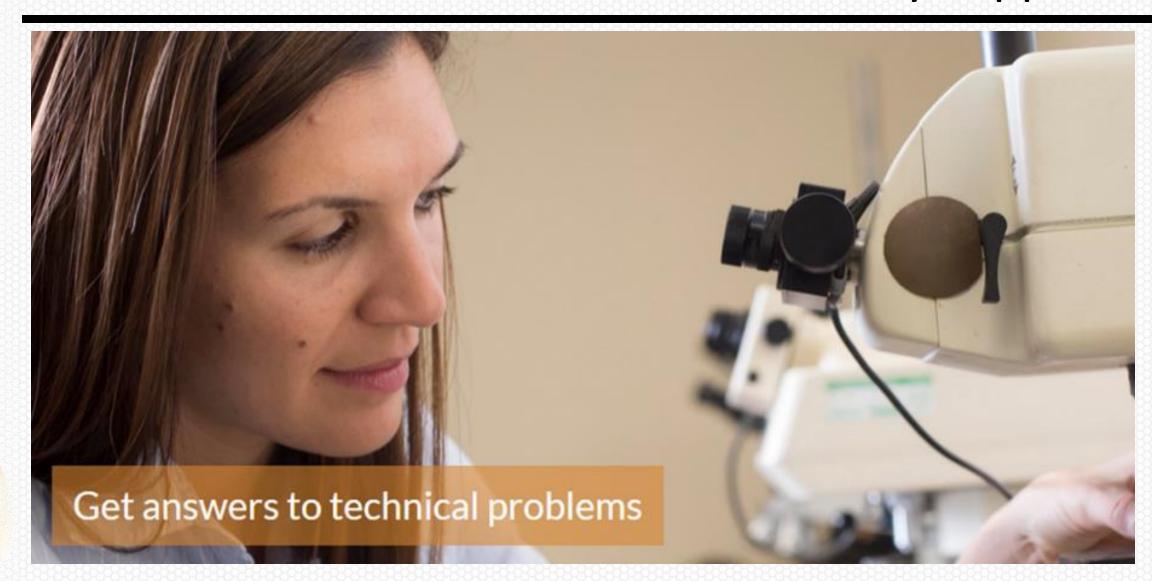













# **Current Layout**



5 Pit Nitriding Systems, fully compliant to SAE2759-12b/10b
Gas neutralizers, Gas panels, Inconel baskets, et al.

# Metallurgic and Materials Engineers will be your laboratory support.



# Nitrex Queretaro. Process Scope

# PROCESS CAP Queréta



Improves wear and resists the effects of high temperatures

NITREG®-S Potential-**Controlled Nitriding** of Stainless Steel

ins Rings

NITREG®-Ti Potential-**Controlled Nitriding** of Titanium Alloys

> Increased wear resistance. Attractive gold finish.

ONC® + Nitreg® or Nitreg-C® with Post-nitriding oxidation

Further enhances corrosion and wear resistance properties. Aesthetic, dark finish.

Hardened superficial layer. Enhances wear and corrosion resistance.

NITREG®-C Potential-

> NITREG® Potential-**Controlled Nitriding**

> > Superior case properties. Enhances wear and fatigue resistance.





# Applications

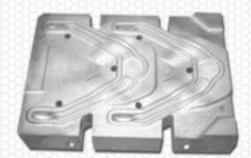
Our potential-controlled gas nitriding and potential-controlled gas nitrocarburizing (ferritic nitrocarburizing-FNC) heat treatment technologies are applied in the precision parts for aerospace, automotive, aluminum extrusion, defense, gears, tool & die, plastics, machinery and many other industries.

# Nitriding comparison table

| PROPERTIES / FEATURES                    | NITREG® Controlled Nitriding     | Conventional Gas                 | Salt Bath                        | Plasma (Ion)                                    |
|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------------------|
| Cleaning (Before)                        | Clean                            | Clean                            | Relatively Clean                 | Very Clean                                      |
| Cleaning (After)                         | Not required                     | Not required                     | Strongly Required                | Not Required                                    |
| Heating Time                             | Short                            | Short                            | Very Short                       | Long                                            |
| Positioning of Parts                     | Simple                           | Simple                           | Simple                           | Very Complex /<br>Requires Skill & Experience   |
| Nitriding of<br>Stainless Steel          | Possible                         | Not Possible                     | Possible                         | Possible                                        |
| Operation of Equipment                   | Very Simple /<br>Fully Automated | Relatively<br>Simple             | Simple                           | Very Complex /<br>Requires Advanced Skills      |
| Temperature Control & Uniformity         | Excellent                        | Good                             | Good                             | Difficult / Insufficient /<br>Overheat Possible |
| Control of Nitriding Potential           | Yes                              | No                               | No                               | No                                              |
| Control of % of $\epsilon$ and $\gamma'$ | Possible                         | No                               | No                               | Possible                                        |
| Nitriding with No White<br>Layer         | Possible                         | No                               | No                               | Possible                                        |
| Porosity Control                         | Possible                         | No                               | No                               | Possible                                        |
| Repeatability of Results                 | Excellent (regardless of load)   | Possible (repetitive loads only) | Possible (repetitive loads only) | Possible<br>(repetitive loads only)             |
| Equipment Maintenance                    | Simple                           | Relatively Complex               | Complex                          | Very Complex                                    |
| Degree of Pollution                      | Very Low                         | High                             | Extremely High                   | Very low                                        |

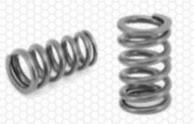
# **Typical Applications**











- Actuator housings
- Bearings and needles
  - Brake pistons
- · Bushing and sleeves
  - Camshafts
  - Crankshafts
- · Clutch hubs/plates
  - Engine valves
  - Forging dies
  - Forming dies
  - Fuel injectors



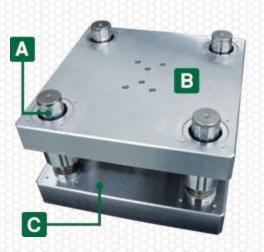


- Gears
- Housings
- Journals
- Piston rings
- Rocker arms
- · Seat tracks & screws
  - Shafts
  - Springs
  - Torsion bars
  - Window sectors
    - Wiper shafts









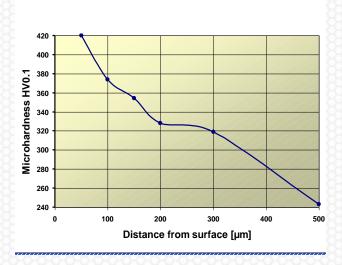

TYPE OF APPLICATION

### **PERFORMANCE EXAMPLE: Extrusion dies**

Today probably 1/5<sup>th</sup> of all installations are supplied. Why: the high value of dies, retooling cost, cost of scrapped aluminum profiles, low quality






### **Brake Pistons**



| Nitriding Specifications    |              |            |
|-----------------------------|--------------|------------|
| Characteristics             | Requirements | Results    |
| White Layer [µm/inch]       | * 20 (.0008) | 24 (.009)  |
| Porous Zone [µm/inch]       | < 50% WL     | 10 (.0004) |
| Effec. Case [µm @ C+100]    | N/A          | 360 (.014) |
| Surface Hardness [HV1]      | N/A          | 499        |
| Corrosion resistance [hrs.] | *            | > 400      |







### **Hydraulic Cylinders**





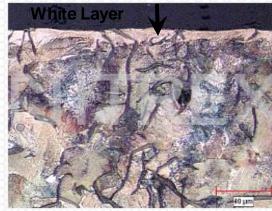
| Nitriding Specifications    |           |         |  |
|-----------------------------|-----------|---------|--|
| Characteristics             | Req'ments | Results |  |
| White Layer [µm]            | 10 - 15   | 13 - 15 |  |
| Effec. Case [µm @ C+50]     | N/A       |         |  |
| Surface Hardness [HV1]      | N/A       | 427     |  |
| Corrosion resistance [hrs.] | *         | > 450   |  |

<sup>\*</sup> Best Resistance Possible

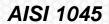
### **Transmission Hubs (1010)**



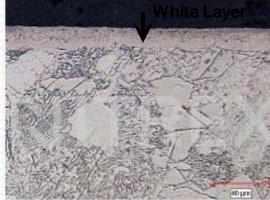
| Nitriding Specifications   |              |              |
|----------------------------|--------------|--------------|
| Characteristics            | Req'ments    | Results      |
| White Layer [µm / inch]    | >10 (.0004") | 15 (.00055") |
| Total Case Depth [µm/inch] | ≤ 500 (.020) | 360 (.014)   |
| Surface Hardness [HV1]     | N/A          | N/A          |





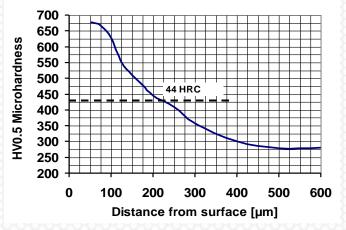


### Timing Gear Nitreg®-C Nitrocarburized

### Grey Cast Iron


| Characteristics          | Req'ments            | Results |
|--------------------------|----------------------|---------|
| White Layer [μm / inch]  | 5 - 10<br>.00020004" | .00028" |
| Surface Hardness (HV0.5) | > 500                | 586     |








| Characteristics          | Req'ments             | Results      |
|--------------------------|-----------------------|--------------|
| White Layer [µm / inch]  | 10 - 25<br>.00040010" | 18<br>.0007" |
| Surface Hardness (HV0.5) | > 450                 | 483          |



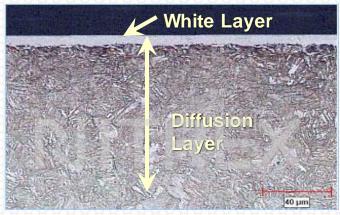


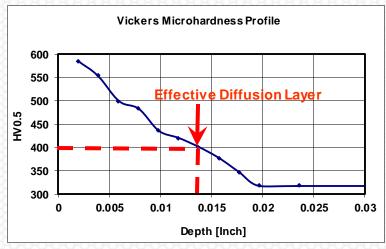
### **Big Rocker Arms**





Material: 4140 alloy steel


### **Results:**


- Compound Layer = 12 μm (~0.0005 Inch)
- Surface Hardness = 580 HV1 (~54 HRC)
- Total Case Depth = 350 μm (~0.0014 Inch)

### Ringe Gear – 4140 Low Alloy Steel



| Characteristics            | Req'ments      | Results      |
|----------------------------|----------------|--------------|
| White Layer [µm/lnch]      | < 15 (0.0006)  | 10 (0.0004)  |
| Eff Case @ 40HRC [µm/lnch] | > 305 (0.0012) | 355 (0.0014) |
| Surface Hardness (HV/HRC)  | > 500 (49)     | 560 (53)     |

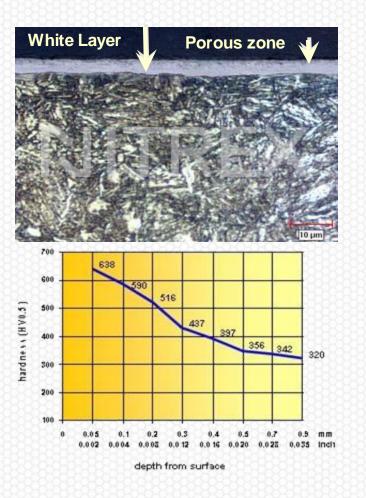




### Transmission Gears, Nitreg® Nitrided



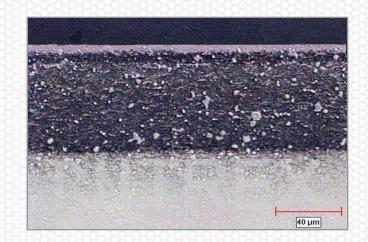





### **Engine Gears, Nitreg® Nitrided**

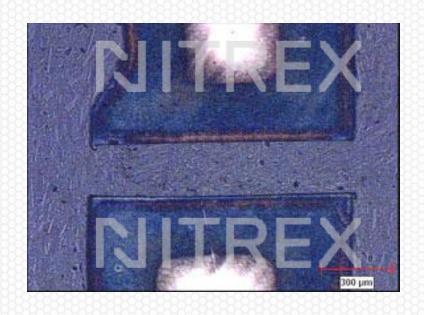


### AISI 4140 (42CrMo4)


| Characteristics         | Req'ments   | Results   |
|-------------------------|-------------|-----------|
| White Layer [µm/inch]   | < 6 (.0002) | 3 (.0001) |
| Surface Hardness (HV20) | > 513       | 577       |



### Stainless Steel Piston Rings, Nitreg®-S




Customer Achieved
Excellent properties
Dimensional stability
Cost savings



### Fuel Injectors, Nitreg® Nitrided





Part: Fuel Injector

Material: H13 (X40CrMoV5-1)

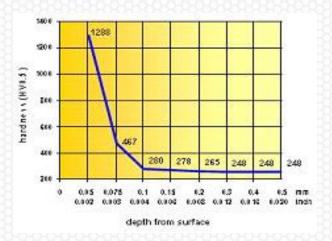
Treatment: Nitreg®

Metallurgical Advantage

Surf. Hardness = 1000 HV1 (~68HRC)

Compound Layer =  $0 \mu m (0")$ 

Total Case Depth = 200  $\mu$ m (~.008")


Core Hardness = 360HV (~36HRC)

### **Turbocharger Insert**

Steel




| Characteristics          | Requirements      | Results |
|--------------------------|-------------------|---------|
| White Layer [µm]         | 5-15              | 6       |
| Effec. Case Depth [µm]   | 60-100 @ core+100 | 68      |
| Surface Hardness [HV0.1] | 1000 min.         | 1300    |





# **Nitriding Systems**

 Our revolutionary, and proprietary gas nitriding technology brought greater wear, fatigue and corrosion resistance to ferrous or non-ferrous materials, qualities much sought after by anyone whose product manufacturing activities involve any heat treatment process. You can have more information, even about acquiring equipment at <a href="https://www.nitrex.com">www.nitrex.com</a>



### For More Information Please Contact in Mexico:

STT Nitrex Querétaro, S. De R.L. De C.V. Calle De Lluvia No. 8, Fraccionamiento Industrial La Noria Querétaro, C.P. 76246 T: +52 442 221 5119 | 442 221 5243

www.Nitrex.com

Queretaro@Nitrex.com

2

